Wenoa Teves 26124157

Muchen He 44638154

Lufei Liu 14090154

ELEC 391 TEAM B1

Ou (Leo) Liu 18800152

LASER LIGHT SHOW

Design and build a 2 degree of freedom spherical wrist that includes 2 mechanically commutated, permanent magnet DC motors that can draw a shape on a flat surface

MOTOR DESIGN DECISIONS

Stranded wire

- Wears out
 quickly
- Flimsy

Carbon Brush

- Durable
- Large surface area
 to conduct current

Magnets

Circular Magnets

- Weak magnetic field
- Large quantities;
 light weight

•

60mm x 10mm x 5mm Rectangular Magnets

- Length to cover rotor core
- Strong magnetic field
- Small quantities; heavy weight

Commutator

- Fixed radius
 - Difficult to implement brushes

 Small magnetic flux through the rotor

Magnet Orientation

Copper Tape

 Wears out quickly
 Difficult to implement brushes

FR4 (Copper Disk)

- Durable
- Adjustable radius for the disk

 Large magnetic flux through the rotor

MOTORS

YAW MOTOR

PITCH MOTOR

Scaled down version of yaw motor

MOTOR PARAMETERS

Kinetic Friction	Torque Constant
Kinetic friction from $\frac{torque}{speed}$ at no load conditions	Torque determined from conservation of power
$B = K\tau \times \frac{I_{no\ load}}{\omega_{no\ load}}$	$V \times I = \omega \times K_{\tau}$
Rotor Inertia	Back EMF
Calculated from mechanical time constant (time to reach 63% of final speed)	Back EMF calculated using KVL
$\tau_m = \frac{J \times R}{K\tau^2}$	$V_{\text{measured}} - I \times R = K_v \times \omega$

Resistance and Inductance

Measured using multimeter and oscilloscope

YAW

esistance
nductance
Nax Power Out
orque Constant
ack EMF Constant
nertia
inetic Friction

PITCH

Resistance Inductance Max Power Out Torque Constant Back EMF Constant Inertia Kinetic Friction 4.18 Ω
1.51 mH
6.49 W
0.00125 Nm/A
800 rad/Vs
0.00593 kg m²
6.5 × 10⁻⁶ Nm s/rad

26.7 Ω 4.37 mH 1.21 W 0.02269 Nm/A 44.077 rad/Vs 4.11 × 10⁻⁵ kg m² 3.3 × 10⁻⁵ Nm s/rad

Motor 0 Open Loop Test

Motor 1 Open Loop Test

SIMULINK MODEL

MODEL

CIRCUITS

Pins from Encoder

• 4 pins from each encoder PCB for signals, 5V, and ground

NOT gates

- Direc1 outputted from microcontroller
- Direc2 is always inverse of Direc1

12V Input

• 12V supply for motors

Microcontroller Dock

- Maps microcontroller pins to PCB signals
- Extra header pins for access to each microcontroller pin

Diode Bridge

 Diode H-Bridge to support PWM signals to motor

Motor Driver

• Current drivers supplying motors

Extra 5V Pins

• Supplied by the microcontroller to be used for off-board components

CIRCUITS

MICROCONTROLLER

- Arduino Uno and Arduino Nano are chosen for their ease of use and safety features
- Considered using FPGA for hardware accelerated tasks but compilation is too slow and debugging is difficult ×
- Considered using 8051 microcontroller but setup is too cumbersome and does not support C++ software ×

Pin Configuration

QUADRATURE DECODING

State Machine

Software Implementation

- Extremely fast ISR (4µs execution time) •
- No quadrature decoder hardware needed \bullet
- Faster than using quadrature decoder \bullet

CONTROLLER LOGIC

CONTROLLER

INTEGRATION PROGRESSION

INITIAL SKETCHES

LEGO PROOF OF CONCEPT

MILESTONE II RESULT

FINAL RESULT

EXTERNAL CONTROL

◄ HOMING 1

- Limiter switch at platform edge
- Triggers calibration event
- Prevents further movement of motor

HOMING 2

- Photoresistor sensor
- Resistance chosen to fit laser light
- Triggers calibration event

RESET SWITCH 🕨

- Resets controller
- Easily accessible
- Safety switch

LASER SAFETY SWITCH

- Overrides laser control from controller
- Turns off laser to prevent eye damage

SYSTEM FLOWCHART

Microcontroller

REMOTE CONTROLLER

- Internet enabled device connects to the controller server via web browser
- Draw shape by tilting the device
- Host computer generates realistic
 laser preview
- Time vector for each vertex
 automatically generated
- Shape data is serialized and transmitted

- Shape data received and stored in memory
- Draws shape stored in memory at full speed

SHAPE VERTEX MAPPING

- Map desired laser path to list of coordinates in memory (passed by host computer)
- 2. Inverse kinematics are applied to obtain angles
- 3. Angles are converted to encoder positions
- 4. Time vector is generated based on length of each line segment

EXPORT

- Position: x and y are exported in two arrays of floats
- Time Vector: relative time between commands are exported in an array of integers
- The exported data is sent through serial and parsed in microcontroller

SUMMARY

- O Fine tuned system models for the custom made motors
- O Very fast and optimized controller firmware
- O Capable of drawing any shapes from any internet connected device
- O Integrated cooling fans
- O 2:1 speed reduction with timing belt with adjustable tension

 Wenoa Teves
 Ou (Leo) Liu
 Lufei Liu
 Muchen He

 26124157
 18800152
 14090154
 44638154