ELEC 341 Design Project Selective Laser Sintering 3D Printer

Part 1

Muchen He44638154Ou Liu18800152

System Overview

The 3D printer uses a laser to build parts. The laser is oriented using a two-axis motor assembly.

The *inverse kinematic* module converts the Cartesian coordinates to the desired motor angle.

The *joint controller* module handles the system response and controller.

The *direct kinematic* converts actual motor angles back to Cartesian coordinates

The *laser control* module adjusts the intensity of the laser based on how far the target is

The *motors* control the orientation of the laser

Inverse & Direct Kinematic

The *inverse kinematic* module converts the Cartesian coordinates to the desired motor angle.

$$q_0 = \tan^{-1} \frac{x}{z'}$$
 $q_1 = \tan^{-1} \frac{y}{z'}$ $z' = \text{height} - z$

Height

The *direct kinematic* converts actual motor angles back to Cartesian coordinates $x = z' \tan(q_0)$

> 1 XYZd

 $y = z' \tan(q_1)$

I.K. implementation in *SimuLink*

 $\frac{1}{u}$

D.K. implementation in *SimuLink*

Power Amplifier

The *power amplifier* takes the role of a filter and a voltage follower.

The transfer function is the output divided by input.

Since there is negative feedback coupled by the capacitor, $V_n = V_p$.

MNA is used to solve the circuit

Transfer Function: $\frac{Y(s)}{U(s)} = \frac{V_{out}}{V_{in}} = \frac{CR_2R_1 - L}{LCR_1s + CR_1R_2}$

Electric Motor Dynamics

The DC motor has relationships between the torque and the current

The current is given by Ohm's law

$$i = \frac{V_{in} - V_{em}}{I_{c} + P}$$

 $V_{emf} = K_b \omega$

 $\tau = K_{\tau}i$

The back-EMF is proportional to the motor speed

The two motors for q_0 and q_1 are identical, so the relationships are the same for both motors

 $\overline{U(s)} = \overline{Ls + R}$

Motor 0

Motor 1

Mechanical Motor Dynamics

Mechanical motor dynamics is a transfer function that converts torque to angular speed. It is given as:

$$\frac{Y(s)}{U(s)} = \frac{\omega}{\tau} = \frac{s}{Js^2 + Bs + K}$$

Where *J* is moment of inertia, *B* is the kinetic friction constant, and *K* is the spring constant.

Kinetic friction is the due to the mass imposed on the motion given as $B = \frac{I_{\text{noLoad}} K_{\tau}}{\omega_{\text{noLoad}}}$

Spring constant is 0 for motor 1 and positive for motor 0

Moment of inertia for motor 1 is J_{rotor} since the laser has negligible mass

 $J_{q1} = J_{rotor}$

Implementation

Mechanical Motor Dynamics

The *moment of inertia* component for motor 1 is the superposition of four parts

Motor 0 rotor: Inertia due to the internal rotor of the outer motor

Aluminium link: Hollow cylinder. Mass is its volume multiplied by 6061 aluminium density

 $J_{\text{link}} = \frac{\text{mass}_{\text{link}}}{12} \left(3(r_2^2 + r_1^2) + h_{\text{link}}^2 \right)$

Motor 1 & counter weight: $mass_{c.w.} = mass_{q1}$

 $J_{q1} \text{ weight } + J_{\text{counter weight}} = J_{\text{extended}} - J_{\text{imaginary}}$ $J_{q0} = J_{\text{link}} + J_{\text{rotor}} + \left(J_{q0} \text{ weight } + J_{\text{counter weight}}\right)$

Static Friction

Static friction works against the applied force and turns into dynamic friction after motor starts moving. It is given by:

 $F_{static} = \mu_{sF} F_N$ $F_{static} = \mu_{sF} g(\text{mass}_{\text{link}} + \text{mass}_{q1} + \text{mass}_{c.w.})$

If $\tau_{applied} < \tau_{static}$ then $\tau_{net} = 0$

Motor 1 does not experience any noticeable static friction since $mass_{rotor} \cong 0$

Sensor Feedback

The *sensor* maps the actual angle of the motors to voltage linearly

Gain: $[-\pi, \pi] \to [-5, 5]$

Electrical Response

Amplifier Response

Y(s) $\frac{1}{U(s)} = \frac{1}{s+1.489 \times 10^4}$ Performance Rise time: 3×10^{-4} s The electrical system produces current given a voltage Internal inductances of the motors causes exponential behavior

2762.4

Given a sudden jolt of voltage, the current spikes, but quickly dissipates

10

0

0.02

0.04

0.08

0.1

0.12

0.06

Time (seconds)

Y(s)49.14 $=\frac{1}{s+41.17}$ $\overline{U(s)}$

Performance Rise time: 0.1s

The step response suggests that the integrating amplifier act as a voltage follower with a gain of $1\frac{v}{v}$

Motor 0 Response

$$\frac{Y(s)}{U(s)} = \frac{12644s}{s^2 + 0.00213s + 14.11}$$

Motor 0 transfer function outputs angular velocity given some torque

Oscillation occurs due to the spring behavior

Angular velocity decays to 0 due to friction

Motor 1 Response

 $\frac{Y(s)}{U(s)} = \frac{2.294 \times 10^6 s}{s(s+0.3856)}$

Given a impulse torque, the motor 1 angular velocity decays exponentially due to friction

With a constant torque, motor 1 speeds up to its maximum angular velocity

Root Locus

The electrical system, amplifier , and motor 1 are stable according to the root locus

Motor 0 has complex root locus, which explains the damped oscillation

Power amplifier

Electrical

Motor 0

Motor 1

To be continued in part 2 (PID Control)