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0 Part A - Active Filter

In this part, we build an active filter using the UA741 op-amps in CircuitMaker (figure 1). In particular,
this will be a second order low-pass Butterworth filter. Where R1 + R2 = 10kΩ.

Figure 1: 2nd order Butterworth low-pass filter

The transfer function of this circuit is given as:

H(s) = AM

1
(RC)2

s2 + s 3−AM

RC + 1
(RC)2

Where AM is the pass-band gain, and the fractional part is in unity gain, and AM = 1 + R2

R1
.

Since we are interested in the poles of the transfer function as it contributes to the pole locations and
ultimately define the system behaviour, we rewrite the denominator as

s2 + 2ζωns+ ω2
n

Where ζ is the damping constant, and ωn is the natural frequency of the system with no damping. It follows
that

ωn =
1

RC
, ζ =

3−AM
2

0.1 Capacitance and Gain

First, we want the 3dB frequency to be at 10kHz, or ωc = 2π × 10krad s−1. The cut-off frequency is given
as ωc = 1

RC . Knowing that R = 10kΩ, we solve for C, which we obtain

C = 1.6nF

1
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Figure 2: 2nd order Butterworth poles on the s-plane

We want to find the values AM which will make the above circuit into a Butterworth filter. A second order
Butterworth filter, by definition the poles 45 deg apart from the negative imaginary axis on the s-plane
(see figure 2). The corresponding normalized Butterworth polynomials are s2 +

√
2s + 1. In other words√

2 = 3−AM . It follows that

AM = 3−
√

2 = 1.586

The corresponding resistor values are therefore as follows.

R1 = 3.868kΩ, R2 = 6.132kΩ

Using these values, the bode plot of the filter is as follows, in figure 3.

Figure 3: Magnitude and phase bode plots of the second order Butterworth filter

On the s-plane, the two poles sit on the the circle with a radius of the frequency ωc = 1
RC = 62500rad s−1.

As seen on the root locus graph in figure 4a, the poles are where the root locus contour starts (at 45 deg
from the negative real axis).
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(a) Pole locations (b) Oscillating pole locations

0.2 Oscillation Gain

While keeping R1 and R2 sum the same at 10kΩ, AM is slowly increased. At AM=3, the ’s’ term in the
denominator of the transfer function becomes 0. This is when the two poles sit on the imaginary axis (as
seen in figure 4b. The system is oscillating with a frequency of 9.5kHz and marginally stable. The output
of the filter is as shown in figure 5.

Figure 5: Oscillating output of Butterworth filter

As AM increases, the poles move along the root locus (the circle) from the pole location as shown in figure
4a to the right until it lands on the imaginary axis as shown i figure 4b. At which point, the response is a
undamped oscillation - even with input shorted (input signal is zero). Increasing AM further will cause the
filter to go unstable as the poles have now crossed to the right-hand plane.

1 Part B - Phase Shift Oscillator

The circuit as shown in figure 6 is built using UA741 OP-AMP, and R = 1kΩ, C = 1µF.

3
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Figure 6: Phase shift oscillator circuit

The oscillators have the denominator of the transfer function is a pair of complex poles that sit on the
imaginary axis, with σ = 0. Thus, a finite signal is produced even when there is no input signal.

The feedback resistor initial had a resistance of 29R = 29kΩ. Even though the circuit produces an oscillation,
it is found that the signal would eventually decay. Thus, the resistance is increased to 29.1kΩ so the signal
would never “die” out.

The values of C and R is halved, then doubled. Table 1 shows different frequencies the circuit gener-
ated.

Circuit Original Halved Doubled
R 1kΩ 0.5kΩ 2kΩ
C 1µF 0.5µF 2µF

Frequency) 64.7Hz 258Hz 16.2Hz

Table 1: Frequencies at different R and C values

Calculated Frequencies
We can calculate the expected frequency manually using the following equation.

ω =
1√

6RC
, f =

1

2π
√

6RC

Plugging in the original resistor and capacitor values, which was R = 1kΩ and C = 1µF, we obtain
f = 64.974Hz.

Notice that the equation only depends on R and C; if R and C are both doubled, denominator is quadrupled,
thus the frequency is reduced by a factor of four. Thus when we double the capacitor and resistor values,
the frequency is f = 16.244Hz.

Similarly, when we half both R and C, we should expect the frequency to be 4 times the original. In-
deed it is: f = 259.9Hz.

There are some discrepancies between the calculated and measured value. However, the error is insignificant.
This could be due to human error while measuring the frequency. It could also attribute to the non-idealities
of real OP-AMP components.
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2 Part C - Feedback Amplifier

The feedback circuit is built using common collector amplifier with BJTs. The BJT used is the 2N3904 type.
A feedback resistor is placed from the output node to the input node. The circuit is as shown in figure 7

Figure 7: Feedback amplifier circuit

In order to find RB2 , we do a parameter sweep on the resistance value. As seen from the transient response
in figure 8, an RB2 with value around 20kΩ yields maximum gain.

Figure 8: Parameter sweep of RB2

Some additional information to note is that the feedback network in this feedback amplifier has a shunt-
shunt topology. This is because the output voltage is sampled, and is controlling the input current.

2.1 DC Operating Point

With the infinity capacitors decoupled, we have the DC bias circuit for the transistors. The voltage and
currents of both transistors are as follows in table 2.

VC VB VE IC IB IE
Q1 1.90V 0.654V 0.00V 1.295mA 10.77µA 1.305mA
Q2 15.0V 1.90V 1.26V 2.19mA 15.4µA 2.21mA

Table 2: Q1 and Q2 DC operating points

For transistor parameters, we utilize the following equations:

hfe ≈ hFE =
IC
IB
, gm =

IC
VT

, rπ =
hfe
gm

5
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Thus, the parameters for Q1 and Q2 is as follows:

hfe gm rπ
Q1 120 0.052 2.32kΩ
Q2 142 0.088 1.62kΩ

Table 3: Q1 and Q2 transistor parameters

2.2 Open Loop Response

Setting the feedback resistor to an open circuit (infinite resistance), we obtain the open loop response from
the circuit. The amplitude bode plot depicts the amplitude open loop response, shown in figure 9.

From the plot, we identify the low and high 3dB frequencies: ωL3dB = 2.883Hz and ωH3dB = 89.63kHz.
Furthermore, we get a midband gain of 42.1dB. or 127.4 V/V. But since this is an inverting amplifier, the
voltage gain is actually -127.4 V/V.

Figure 9: Open loop amplitude bode plot of the feedback amplifier

Applying a test voltage source and measuring the test current, we can find the input and output impedance.

The measured input impedance is Vtest

Itest
= 240.4µV

93.35nA = 2.575kΩ.

The measured output impedance is Vtest

Itest
= 707.1µV

11.18µA = 63.247Ω.

2.2.1 Predicting Closed Loop Response

In order to obtain closed loop prediction, we must analyse the feedback network and the small signal model
in greater detail. First, we know that the feedback network (figure 10) utilizes shunt-shunt topology; for
that reason, we will use y-parameters to represent the equivalent circuit of the feedback network.

Figure 10: Feedback network of the feedback amplifier

6
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Where y-parameters uses these set of equations:[
I1
I2

]
=

[
y11 y12
y21 y22

] [
V1
V2

]
Now we compute for the y-parameter matrix.

y11 =
I1
V1

∣∣∣∣
V2=0

=
1

Rf
, y12 =

I1
V2

∣∣∣∣
V1=0

= − 1

Rf

Because the effect due to the feed-forward gain of y21 is so small, the gain may be neglected. Thus we
proceed to compute for

y22 =
I2
V2

∣∣∣∣
V1=0

=
1

Rf

Voltage Gain
For Rf=100kΩ, we obtain the feedback gain β = y12 = − 1

Rf
= −10µS. Recall the open loop voltage gain

is -127.4 V/V. However, since we are using a shunt-shunt topology, we need a current controlled voltage
amplifier, thus we need the gain in terms of V/I. In particular we want the gain in terms of Vout/ii. Hence,

Vout
ii

=
Vout
Vi

Rs

= Rs

(
Vout
Vi

)
Where Rs = 5kΩ. Plugging everything in, we obtain the open loop gain A = 5kΩ × −127.4V/V =
−636.75kV/A. This makes sense because the feedback gain is in the units of Siemens, thus we need the open
loop gain in the units of ohms, which is V/A.

Using the feedback equation we evaluate for the closed loop gain.

Af =
A

1 +Aβ

=
636752

1 +−636752 · −1× 10−5

= 86.43kV/A

Converting back to voltage, we use the relationship in the above equation. Finally, the voltage gain with
feedback is −17.285V/V.

3dB Frequencies
Recall the open-loop frequencies are ωL3dB = 2.883Hz and ωH3dB = 89.63kHz. Due to the feedback, there
exists a bandwidth extension with a factor of (1 +Aβ). In particular,

ωL3dBf
=

ωL3dB
1 +Aβ

=
2.883

1 + (−6.37× 105)(−1× 10−5)
= 0.391Hz

ωH3dBf
= ωH3dB(1 +Aβ) = 89.63× 103(1 + (−6.37× 105)(−1× 10−5) = 660.35kHz

I/O Impedances
Recall the open loop input and output impedances are respectively 2.575kΩ and 63.247kΩ. The amplifier
utilizes a shunt-shunt topology, which means that the input impedance with feedback is reduced and the
output impedance with feedback is also reduced. Specifically, they are reduced by (1 +Aβ). In particular,

7
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Rif =
Ri

1 +Aβ
=

2.575× 103

1 + (−6.37× 105)(−1× 10−5)
= 349.5Ω

Rof =
Ro

1 +Aβ
=

63.247

1 + (−6.37× 105)(−1× 10−5)
= 8.585Ω

2.2.2 Comparing Predicted Values

Simulation in CircuitMaker is ran to verify how close the predicted / calculated values are to the actual
results. First, the frequency response:

Figure 11: Frequency response of feedback amplifier with Rf of 100kΩ

The mid-band gain at 1kHz is 24.735dB from the bode plot (figure 11), or 17.25 in magnitude. Since it is
still an inverting amplifier, the voltage gain is actually -17.25 V/V. Our prediction of -17.285 V/V is excellent.

Next, using the bode plot (figure 11), we obtain the low and high 3dB frequencies. The low 3dB fre-
quency is 0.512Hz and the high 3dB frequency is 676.2kHz. The inaccuracy of the low 3dB frequency could
possibly attribute to the peaking of gain at the low-frequency cut off point.

For input and output impedances, test sources are setup in the circuit at the input and output. The
test voltage is imposed and the test current is measured. The result is as follows.

Rif = 241Ω, Rof = 8.657Ω

The predicted input impedance has a higher error but around the same magnitude. However, the output
impedance is accurate.

2.3 Estimating Feedback with Gain

For five different values of Rf: 1kΩ, 10kΩ, 100kΩ, 1MΩ, and 10MΩ, the feedback amplifier is simulated
and the frequency response is as follows (figure 12). Where the red plot corresponds to Rf of 1kΩ, blue
plot corresponds to 10kΩ, green plot corresponds to 100kΩ, yellow plot corresponds to 1MΩ, and finally the
purple plot corresponds to 10MΩ.

8
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Figure 12: Frequency response of feedback amplifier with various Rf

We can compute the feedback gain β just by knowing the mid-band gain with feedback and the open loop
gain. Recall the open loop gain is -636.75kV/A.

First, we need to convert midband gain at 1kHz from decibels to V/V. Then V/A because reasons dis-
cussed previously. Finally, we solve the equation Af = A

1+Aβ for β.

Additionally, as discussed earlier, the feedback gain is also calculated as β = − 1
Rf

from the feedback

network. Table 4 contains the feedback gain of each configuration and comparison to the calculated β value.

Rf (Ω) V-gain (dB) V-gain (V/V) Af (V/A) β (A/V) βcalculated (A/V)
1k 14.02 −0.199 −995.4 −1.00× 10−3 −1.00× 10−3

10k 5.862 −1.964 −9.82× 103 −1.00× 10−4 −1.00× 10−4

100k 24.74 −17.26 −86.29× 103 −1.00× 10−5 −1.00× 10−5

1M 37.83 −77.85 −389.2× 103 −9.99× 10−7 −1.00× 10−6

10M 41.58 −120.0 −600.0× 103 9.06× 10−8 −1.00× 10−7

Table 4: Feedback gains with various feedback resistances

2.4 Estimating Feedback with I/O Impedances

At 1kHz, Rf is varied between 10kΩ, 100kΩ, and 1MΩ. The input and output impedances are measured
using techniques described before. They are displayed in table 5.

Rf (Ω) Rif (Ω) Rof (Ω)
10k 26.46 1.139
100k 241.1 8.650
1M 1.308k 38.43

Table 5: Input and output impedances with varying feedback resistance

9
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With these input and output impedance values, the open loop input and output impedances, and the open
loop gain A, we can compute for the amount of feedback / feedback gain, β using the relationships:

Rif =
Ri

1 +Aβ
, Rof =

Ro
1 +Aβ

The feedback gain for each Rf value is in the table as follows (table ??). The calculated feedback form using
the input impedance quite inaccurate compared to the feedback gain calculated from the output impedance.
The average of the two is also taken for comparison purposes.

Rf (Ω) Rif (Ω) Rof (Ω) βi (S) βo (S) βave (S)
10k 26.46 1.139 −1.51× 10−4 −8.564× 10−5 −1.18× 10−4

100k 241.1 8.650 −1.52× 10−5 −9.91× 10−6 −1.26× 10−5

1M 1.308k 38.43 −1.52× 10−6 −1.01× 10−6 −1.27× 10−6

Table 6: Input and output impedances with varying feedback resistance

Compared to the feedback values calculated above in table 4, estimating the feedback gain using input and
output impedances are slightly more inaccurate.

2.5 Desensitivity Factor

The gain de-sensitivity can be found by taking the derivative of the feedback gain with respect to the open
loop gain.

dAf
dA

=
1

(1 +Aβ)2

dAf
Af

=

(
1

1 +Aβ

)
dA

A

Thus the desensitivity factor is given by 1 +Aβ.

When Rf = ∞, there is no feedback, and thus the amplifier is open loop. Then obviously the feedback
factor β = 0 and thus the desensitivity factor is 1.

Varying RC in the amplifier circuit to 9.9kΩ and 10.1kΩ, we see the gain change as follows (table 7).

RC V-gain (V/V)
9.9k -126.853
10k -127.556

10.1k -128.204

Table 7: Gain of feedback amplifier with varying RC

When Rf=100kΩ, however, by varying the RC as before, we then again observe what happens to the gain
when RC changes (table 8).

RC V-gain (V/V)
9.9k -17.235
10k -17.248

10.1k -17.260

Table 8: Gain of feedback amplifier with varying RC

10
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We see that the gain barely change, hence desensitized by the feedback network. The desensitization factor
is 1 +Aβ = 1 + 7.368.
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