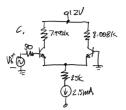
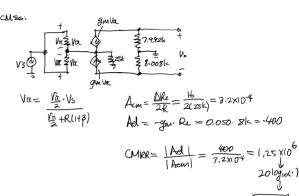

Problem Set 6 (Again)


November 13, 2017 17:35


1. For the circuit in Figure 1, do the following: a) Find the value of R_1 that will make $V_{C1} = V_{C2} = 2V$ and the value of R_2 that will make $V_{C3} = V_{C4} = 4V$. $(R_1 = 4.52 k\Omega \ ; R_2 = 2.83 k\Omega)$. b) Using the values for R_1 and R_2 found in part a above, calculate A_{34} if the output is connected to an 8k Ω load. $(A_{34} = 8600V/V)$ c) Using R_1 calculated in part a above, find the CMRR for the input stage assuming that the second stage has been disconnected. that $r_{16} = 25 k\Omega$ $(r_{\rm s}$ of $Q_{\rm s})$, and that one of the 8k Ω resistors is, in fact, 7.992k Ω and the other is, in fact, 8.008k Ω . (CMRR = 118dB)

