Label Convention:
$I_{A}, V_{A} \quad D C$ values
I_{a}, V_{a} Complex values
$i_{A}, V_{A} \quad$ Instantaneous values
$i_{a}, v_{a} \quad$ Small signal values
Model : $\frac{i_{c}=I_{c}+i_{c}}{\uparrow}$ small signal current instantaneous DC current current

Transistor act as amplifier in its ACTIVE REGION
$L T E B J$ is forward biased: VBE $\approx 0.7 \mathrm{~V}$
$L \rightarrow C B J$ B reverse biased: $V_{C B}>-0.7 \mathrm{~V}$

DC Relationship:
NPN BJT Transistor:

Relationships bow α \& β :

$$
\alpha=\frac{\beta}{\beta+1}, \quad \beta=\frac{\alpha}{1-\alpha}
$$

Collector Current
Given $I_{C}=I_{S} e^{\frac{V_{B E}}{V_{T}}}$, and $V_{E E}=V_{B E}+V_{b e}$

$$
\begin{aligned}
& i_{c}=I_{s} e^{\frac{V_{V_{E}}}{V_{T}}} \\
& =I_{s} e^{\frac{V_{\text {Be }}+V_{\text {be }}}{V_{T}}} \\
& =\underbrace{I_{S} e^{\frac{V_{B}}{V_{T}}} \cdot}_{I_{C}} e^{\frac{V_{b e}}{V_{T}}} \\
& i_{c}=I_{c} \cdot e^{\frac{v_{b}}{V_{T}}} \\
& i_{c}=\frac{I_{C}}{T}+\frac{I_{C}}{V_{T}} V_{\text {be }} \\
& D C \quad \text { tonal signal }\left(\bar{i}_{c}=\frac{I_{c}}{V_{T}} \text { ven }\right)
\end{aligned}
$$

Sural signal collector wrinent $i_{c}=\frac{I_{c}}{V_{T}} v_{b e}=g_{n} \cdot V_{b e}$

Surall signal collector current $i_{c}=\frac{I_{c}}{V_{T}} v_{b e}=g_{M} \cdot v_{b e}$

Base Current
Instantaneous current $i_{B}=I_{B}+i_{b}$,

$$
\begin{aligned}
& i_{B}=\frac{i_{c}}{\beta} \longleftarrow i c=I_{c}+i_{c} \\
& i_{B}=\frac{I_{c}}{\beta}+\frac{\bar{u}}{\beta} \longleftarrow i c=g m v_{b c} \\
& i_{B}=\frac{I_{c}}{\beta}+\underbrace{\frac{g_{m}}{\beta} V_{b c}}_{\text {Smainsigual }}
\end{aligned}
$$

\rightarrow thus $i_{c}=\frac{g m v_{b e}}{\beta}$
Small Signal Input Resistance

$$
r_{\pi} \equiv \frac{r_{b e}}{i_{b}}=\frac{\beta}{g_{m}}=\beta \frac{V_{T}}{I_{c}}=\frac{V_{T}}{I_{B}}
$$

So fan our model is:

THIS IS STILL NOT COMPLETE MODLE
missing components:- EBJ junction caparitances

- CBJ junction capacitances

EBI Capacitance (Diffuse Capacitance)

- capacitance based on "change in the minority carrier concentrations on either side of the junction"
- can be approximately modelled linearly

Reverse Biased CBJ Capacitance (Space-Charge Capacitance)

- based on "change in exposed charge on either side of the depletion region"
- can also be modelled linearly

Now our model is:

\triangle THIS IS SILL NOT COMPLETE MODE
miring components:- Votacige controlled convent source output impedence

Output impedence is given as the inverse of the change in ic as a function of $v_{C E}$ at constant $v_{B E}$

$$
\begin{aligned}
& \rightarrow r_{0}=\left[\left.\left(\frac{\partial i_{C}}{\partial V_{C E}}\right)\right|_{V_{E E} \text { is constant }}\right]^{-1} \\
& \text { * This can be approximated as } \\
& \begin{array}{r}
r_{0} \approx \frac{V_{A}}{I_{C}} \approx \text { Early voltage } \\
\sim \text { Bids current }
\end{array}
\end{aligned}
$$

Updated Model:

(1) Model is good enough

