Mark scaling: $x+0.9^{*}\left(x-0.01 x^{\wedge} 2\right)$
Read Basic Feedback:


$$
A_{f}(s)=\frac{A(s)}{1+A(s) \beta(s)}=\frac{A(j \omega)}{1+A(j \omega) \beta(j \omega)}
$$

hop gain: $L(j \omega)=A(j \omega) B(j \omega)$

$$
=A(j \omega) \beta(j w) \left\lvert\, e^{j \phi(w)} \frac{\text { phase }}{}_{\text {pen }}\right.
$$

phase of loop gath
when $u(\phi)=180^{\circ}$. then
(1) $1+A_{\beta} B$ positive (positive)
(2) 1 tAB $=0$ (oscillate)
(3) $1+A_{p}$ is negative (unstable)

Poles of feedback amplifier:
Characteristic Equation: $1+A(s) \beta(s)$
Consider single pole amp.:

$$
\begin{aligned}
A(s) & =\frac{A_{0}}{1+\left(\frac{s}{20 p}\right)} \\
\rightarrow A_{f}(s) & =\frac{\left(\frac{A_{0}}{1+A_{0} \beta}\right)}{1+\left(\frac{s}{\omega_{p}\left(1+A_{0}(3)\right.}\right)} \quad \text { (Bandwidth extension) }
\end{aligned}
$$

If $w \gg w_{\text {pf }}$ then $A_{f}(s) \approx A(s)$


Consider tho-pole amplifier

$$
\begin{aligned}
& A(s)=\frac{A_{0}}{\left(1+\frac{s}{w p_{1} 1}\right)\left(1+\frac{s}{w p_{p}}\right)} \\
& A_{f(s)}=\frac{A_{0}}{\left(1+\frac{s}{\omega_{0}}\right)\left(1+\frac{s}{\omega_{p_{2}}}\right)+A_{0} \beta} \int \text { chaw eqn: } D=\left(1+\frac{s}{\omega_{p p}}\right)\left(1+\frac{s}{\omega p_{p 2}}\right)+A_{0} \beta
\end{aligned}
$$



