The Differential Amplifier
t doeon't need $A C$ coupled (no $\left(c_{1}, C_{c 2}\right)$

Typical Diff. Amplifier:

If $V_{B_{1}}=V_{B_{2}}$, then $V_{B_{E 1}}=V_{B_{22}}$, then $i_{E 1}=i_{E_{2}}=I_{E_{1}}=I_{E_{2}}=I / 2$
Where $i=I_{s} e^{\frac{V_{B E}}{V_{T}}}$
The ns $i_{E_{1}}=\frac{I_{S}}{\alpha} e^{\left(V_{B} \cdot V_{E}\right) / V_{T}}$

$$
i_{E_{2}}=\frac{I_{s}}{\alpha} e^{\left(\sqrt{B_{2}}-v_{E}\right) / v r}
$$

Driving by I :

$$
\begin{aligned}
\frac{i E 1}{I} & =\frac{i E_{1}}{i E_{1}+i E_{2}} \\
& =\frac{1}{1+\frac{E_{E}}{\Gamma E_{2}}} \\
& =\left(1+e^{\left.\left(V_{B_{2}}-V_{B 1}\right) / U_{T}\right)^{-1}}\right. \\
\rightarrow & i_{E_{1}}=I \cdot\left(1+e^{\left(v_{\left.B_{2}-V_{B 1}\right) / V T}\right.}\right)^{-1}
\end{aligned}
$$

Similady, $\quad i E_{2}=I \cdot\left(1+e^{\left(V_{\left.B_{1}-V_{B_{2}}\right) / V_{\tau}}\right)^{-1}}\right.$

Plotting $I_{e 1}$ and $I_{E 2}$ wot $\frac{V_{B 1}-V_{B 2}}{V_{T}}$, we get:

the relationships are vousonaloly linear in this region.

Small signal Operation requires the differential voltage (in the linear region)

$$
\left|V_{d}\right|=\left|U_{B_{2}}-V_{B_{1}}\right| \ll 2 V_{T}
$$

Using the fact $i_{1}=\alpha i=1$ and approximating using taylor series.

$$
\text { so } \bar{k}_{1} \approx \alpha \frac{T}{2}\left(1+\frac{V d}{2 V T}\right)
$$

Similarly $i c_{2} \approx \alpha \frac{T}{2}\left(1-\frac{V d}{2 V_{T}}\right)$
Consider Un is evenly distributeel. ($\pm V / / 2$ across each transistor), then

$$
\begin{aligned}
& i c=\alpha \frac{I}{2} \pm \frac{\alpha I}{2 V_{\tau}} \cdot \frac{V_{d}}{2} \\
&=I_{c} \pm g_{m} \frac{v d}{2} \\
& \Rightarrow g_{m}=\frac{\alpha I}{2 V_{T}} \\
& \Rightarrow \bar{k}=g_{m} \frac{V d}{2}
\end{aligned}
$$

Calculating the voltage gain:

Using KUL, we conclude:

$$
\frac{V_{0}}{V_{d}}=-g_{m} R_{c}
$$

Current Mirror (Basic Current Source)
Typical current mirror setup:

Ohm's law: $I_{\text {left }}=\frac{V-\left(V_{E}+V_{B E}\right)}{\text { Ret et }}$

$$
\begin{aligned}
K C L: I_{\text {net }}+I_{y_{1}} & =I_{E_{1}}+\left(I_{3 s 1}+I_{B_{2}}\right) \\
& =I_{E 1}+I_{B_{2}}
\end{aligned}
$$

$$
K C l=I_{0}=I_{C 2}=I_{E 2}-I_{B 2}
$$

Sine Q_{1} and Q_{2} are identical, $V_{B_{1}}=V_{B_{2}}$

$$
\begin{aligned}
& \text { Thus } I_{E 1}=I_{E_{2}} \\
& I_{\text {ret }}=I_{E_{1}}+I_{B 2} \\
& I_{\text {net }}-I_{0}=I_{E_{1}}+I_{B 2}-\left(I_{E 2}-I_{B 2}\right) \\
& I_{\text {net }}=2 I_{B 2}+I_{0} . \\
& I_{0}=I_{C r} \\
& I_{\text {ret }}=I_{0}\left(1+\frac{2}{\beta}\right) \\
& \rightarrow I_{0}=\frac{I_{\text {ref }}}{\left(1+\frac{2}{\beta}\right)}
\end{aligned}
$$

