Common collector Amplifier

- Power Gaia
+ High Input Impedence
+ Low output Impedeme
+ Wide bandwidth
+ DC coupled input.
Typical CC amplifier:

$$
\begin{aligned}
& V_{B_{2}}=V_{C 1} \\
& I_{B_{2}}=\frac{V_{B_{2}}-0.7}{\left(1+\beta_{2}\right) R_{E 2}} \text { (mesh analysis.) } \\
& I_{C_{1}}=\frac{V_{C 1}-V_{C 1}}{R_{C 1}}-I_{B_{22}}
\end{aligned}
$$

Resistance seen into the base of Q_{2} at $D C B$

$$
R_{1 n_{2}}=\frac{V_{B_{2}}}{I_{B_{2}}}=\frac{V_{B_{2}}}{V_{B 2}-0.7}\left(1+\beta_{2}\right) R_{E 2}
$$

For typical setup, $R_{\text {In }}$ will be tears of $k \Omega$. (Large input impedance)

$$
\left\{\begin{array}{l}
\text { Consider voltage divider: } \\
V_{s} \sum_{\sum_{s}}^{\sum_{s} R_{N}} V_{0} \text { Big } R_{i n} \Rightarrow \text { Bigger } \operatorname{gain}\left(\frac{V_{0}}{V_{s}}\right)
\end{array}\right\}
$$

Small Signal Model

$$
\begin{aligned}
& R_{\text {mf }}=r_{\pi 2}+(1+\beta)\left(R E_{2} \| R_{L}\right) \\
& i_{b_{2}}=\frac{V_{\pi_{2}}}{V_{\pi_{2}}}=\frac{V_{o 1}}{R_{i_{2}}} \\
& \left.\begin{array}{l}
i_{2}=(1+\beta) i b_{2} \\
i_{i}=\frac{V_{01}}{R_{L_{1}}}+i_{b_{2}}
\end{array}\right\} \frac{i_{e_{2}}}{i i}=\frac{\left(1+\beta_{3} i b_{2}\right.}{\left(\frac{i b_{2} 2 R_{i n} 2}{R_{1}\| \| R_{i n} 2}\right)}=\frac{\left(1+\beta_{2}\right) R_{1}}{R_{1}+r_{\pi 2}+\left(1+\beta_{2}\right)\left(R_{E_{2}} \| R_{L}\right)} \\
& =\frac{V_{01}}{R_{L_{1}}}+\frac{V_{01}}{R_{\text {in }} 2} \\
& \approx \frac{R_{C l}}{R_{E} \| R_{L}} \\
& =\frac{V_{01}}{R_{u} \| R_{i n 2}} \\
& =\frac{i_{b_{2}} R_{\text {in } 2}}{R_{c} / / / R_{i n z}} \\
& \text { (current gain) }
\end{aligned}
$$

Since $V_{Q_{2}}=i_{e_{2}} R_{E_{2}} \| R_{L_{1}}$

$$
\begin{aligned}
& \frac{V_{V_{2}}}{V_{01}}=\frac{\left(1+\beta_{2}\right)\left(R_{0} \| R_{L}\right)}{r_{2}+\left(1+\beta_{2}\right)\left(R_{2} \| R_{L}\right)} \\
& \approx 1 \quad(\text { typically }) \\
& R_{\text {out }}=R_{E_{2}} \| \frac{r_{t_{2}}+R_{L_{1}}}{1+\beta_{2}} \quad(\text { found by applying ted source \& } \mathrm{ku}) \\
& \approx \frac{r_{\pi_{2}}+R_{L 1}}{1+\beta_{2}}
\end{aligned}
$$

High Frequency Response.

We shall do OSTC / SCTC test:

$$
\begin{aligned}
& \tau_{o c}^{c \mu}=\left(c_{\mu_{1}}+c_{\mu_{2}}\right) \cdot\left[R_{c_{1}} \|\left(r_{\pi_{2}}+\left(1+\beta_{2}\right) R_{l l}\right)\right] \approx\left(c_{\mu_{1}}+c_{\mu_{2}}\right) R_{c_{1}} \\
& \tau_{s c}=\left(c_{\mu_{1}}+c_{\mu_{2}}\right)\left(R_{c_{1}} \| R_{11}\right) \approx\left(c_{\mu_{1}}+c_{\mu_{2}}\right) \cdot R_{11}
\end{aligned}
$$

For $C \mu$, we use test source, then use OCTC/SCTC tests:

$R_{\text {test }}=\frac{V_{\text {test }}}{I_{\text {test }}}$

GL: $\quad i_{\text {lest }}=-e t_{i_{b 2}}+g m z V_{a}$

$$
=i_{e}+i_{b_{2}}+\beta_{2} i_{b_{2}}
$$

$\mathrm{KCl}: \quad$ obtest $=i_{\text {er }}+i_{1}$
$v_{\text {test }}=i u R_{u}$ tie R_{11}, where $v_{e}=i n-\beta \cdot i b_{2}$

$$
\begin{aligned}
& \Longrightarrow \frac{i_{1}}{i_{b_{2}}}=\frac{r_{\pi_{2}}+\beta_{2} \cdot R_{11}}{R_{11}+R_{11}} \\
& R_{\text {teat }}=\frac{v \text { test }}{R_{\text {at }}}=\frac{i_{b_{2}} r_{\pi_{2}}}{i_{b_{2}+i 1}}=\frac{r_{\pi_{2}}}{1+\frac{i}{i_{22}}}=\frac{r_{\pi_{2}}}{1+\left(\frac{v_{\pi_{2}}+\beta_{2} R_{11}}{R_{c_{1}}+R_{11}}\right)}
\end{aligned}
$$

Thess,
$\tau_{o C}^{\pi_{2}}=C_{\pi_{2}} \cdot\left(\frac{V_{\pi_{2}}}{1+\left(\frac{V_{\pi_{2}}+R_{2}}{R_{1}+R_{11}}\right)}\right) \approx \frac{C_{\pi_{2}} \sqrt{\pi_{2}}}{1+\frac{\sqrt{3} R_{11}}{R_{1}}} \quad$ dominant HF poles are dictated by $C_{\mu s}$.

$$
\tau_{s c}^{c \pi_{2}}=C_{\pi_{2}}\left(\frac{r_{\pi_{2}}}{1+p_{2}} / / R_{11}\right)
$$

