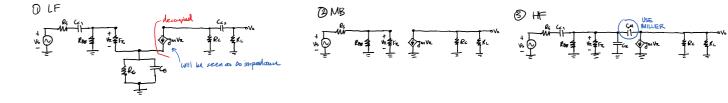

Common Emitter Amplifier


October 12, 2017 3:49 PM

Typiced Common Emitter (CE) Amplifier.

(1)

First, we shall find the zeroes:

(c, and Crz are coupling capacitors and thus have zeroes at sero: $W_{221} = 0_1$ $W_{122} = 0$

Third zero is at where admittance of emitter network =0

$$Y_E = \frac{1}{R_E} + SC_E = 0$$

Thus, we have the third pole:

WLZ3 = RECE

Now we need to find the poles

The output stage B decoupled from the rest, pole associated with Cc2 B

$$\mathcal{T}_{Sc}^{Con} = (R_{L} + R_{L})C_{cr}$$
$$\mathcal{W}_{LPI} = \frac{1}{(R_{C} + R_{L})(c_{r})}$$

For the left side, we do SCTC tests

For Cci , we short Czi (RE B neglected)

Vic = (KS+ ROB || VIL) · CCI

For CEI we short CLI, (impedance of the base is DEMAGINIFIED by 1+7)

This is shown by believing CE with a best voltage source, colluctating the test current. The impedance seen by CE is $R = \frac{V + ext}{2 + ext}$

_ C

This is shown by befacing CE with a test voltage source, columnizing the test content. The impedance seen by CE is $R = \frac{V + est}{I + est}$ $C_{sc}^{C} = \left(R_{E} \parallel \left(\frac{1}{HP}\right) \left(f_{R} + R_{RE} \parallel R_{S}\right)\right) \cdot C_{E}$ P = MAGEN HICATION

We want GE to be an open circuit when Ca conducts, hence ...

OCTE test on Cei (opening Ce): $T_{bc}^{(c)} = \left[R_{s} + R_{BB} \parallel (r_{c} + (1+\beta)R_{c})\right] \cdot C_{ci}$ $(T_{bc} + R_{bb} \parallel (r_{c} + (1+\beta)R_{c})] \cdot C_{ci}$ $(T_{bc} + R_{bc} + R_{bc})$ $(T_{bc} + R_{bc} + R_{bc})$ $T_{hus} = \left[\frac{1}{r_{ci}}, W_{cp} = \frac{1}{r_{ci}}, W_{cp} = \frac{1}{$

The midband gain & strightformand:

$$V\pi = Vs \cdot \left(\frac{R_{SB} \parallel r_{\pi}}{R_{BB} \parallel r_{\pi} + R_{S}}\right)$$

$$V_{0} = -gm(R_{c} \parallel R_{\pi}) V_{\pi}$$

$$A_{m2} \frac{V_{0}}{Vs} = -gm\left(\frac{R_{CB} \parallel r_{\pi}}{R_{BB} \parallel r_{\pi} + R_{T}}\right)(R_{c} \parallel R_{c})$$

High frequency response is just like what where done before

1. Use miller

2. decouple output

3. Find poles (all zeroes are at as (neglegible)) with SCTL, OCTC tests.

(Refer to previous notes)