Circuit of Interest

Conside common-emitter amplifier:

Where:

- Vs 3 source voltage, R_{s} is the sources internal resistame
- Ce b the coupling capacitor
shorting $D C$
Using small signal model, We represent the cirarit using the hybrid π model

BIt:

circuit of interest:

Thevenin, Norton, and Miller

Theremin:

$$
A \text { D } V_{t}^{+}=\text {Thevenin voltage }
$$

$A \underset{\sim}{\leftarrow} V_{t} \quad Z_{t}$ (Ttevenin impedeme) $=\frac{V_{T}}{I_{T}}$
Norton
$A \longrightarrow I_{n}=$ Norton corvent
$\square Y_{n}$ (Norton admittance) $=\frac{I_{t}}{V_{T}}$
NEW!
Miller: (For given network where $V_{2}=k V_{1}$):

Circuit of Interest Simplified

september 23, 2017 11:16 PM
We lett the BJT circuit of interest as

First, we can simplify the RHS:

$$
V_{T}-\underbrace{\left(r_{0} / / R_{c}\right)}_{z^{+\mu}}\left(-g_{m} V_{\pi}\right)
$$

Input $\rightarrow V_{T}-\underbrace{-g_{m}\left(V_{0} \| R_{c}\right)}_{k} V_{\pi} \leftarrow$ output

Now let's spit C_{μ} in to the ripest side and the output side
Recall that: for $V_{2}=k V_{1}$, where $V_{1}=V_{a_{1}}, V_{2}=V_{T}, z=z_{s \mu}+\left(r_{0} \| R_{c}\right), k=$-genro $\left.\| / R_{c}\right)$

$$
z_{1}=z\left(\frac{1}{1-k}\right), \quad z_{2}=z\left(\frac{k}{1-k}\right)
$$

IMPV

$$
z_{1}=\left[z_{c \mu}+\left(r_{0} \| R_{c}\right)\right]\left(\frac{1}{1+g_{m}\left(r_{0} / / R_{c}\right.}\right)
$$

$$
=\frac{\left(\frac{1}{j w c_{\mu}}+v_{0} / / R_{c}\right)}{1+g_{m}\left(r_{0} / / R_{c}\right)}
$$

$$
\longrightarrow \prod_{\frac{1}{2}}^{v_{\pi}} g_{\mu} g_{m}\left(r_{0} / / R_{c}\right)
$$

Similar to the input we cen approximate given $g_{m}\left(r_{0} / / R_{c}\right) \gg 1$ $-g_{m}\left(\right.$ roo $\left.1 R_{c}\right) v_{\pi}^{+} \sim V_{0}$ $\frac{\text { is tar as output is concerned, this can be treated }}{\text { as an independent source. }}$

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\int_{0}^{\infty} f(t) e^{-s t} d t \\
& \mathcal{L}\{K f(t)\}=K \alpha\{f(t)\} \\
& \mathcal{L}\left\{f_{1}(t) \pm f_{2}(t)\right\}=F_{1}(s) \pm F_{2}(s) \\
& \alpha\left\{K e^{a t}\right\}=\frac{k}{s-a} \\
& \mathcal{L}\left\{\frac{d f(t)\}}{d t}\right\}=s F(s)-f\left(0^{-}\right) \\
& \alpha\left\{\frac{d^{2} f(t)}{d t^{2}}\right\}=s^{2} F(s)-s f(\sigma)-\frac{d f}{d t}\left(0^{-}\right) \\
& \alpha\left\{\int_{0}^{t} f(t) d t\right\}=\frac{F(s)}{s} \\
& \mathcal{L}\left\{f_{1}(t) * f_{2}(t)\right\}=F_{1}(s) \cdot F_{2}(s) \\
& \alpha\left\{e^{a t} f(t)\right\}=F(s-a) \\
& \mathcal{L}\left\{\frac{K t^{n-1} e^{a t}}{(n-1)!}\right\}=\frac{K}{(s-a)^{n}} \\
& \alpha\{\sin (\omega t)\}=\frac{\omega}{s^{2}+\omega w^{2}}
\end{aligned}
$$

$$
\begin{aligned}
s(\text { complex frequency }) & =\underset{\uparrow}{\sigma}+\bar{j} \omega \\
& \prod_{\text {neper }} \text { (rate at which func grows/decays) }
\end{aligned}
$$

ex. Given transfer faction $T(s)=\frac{1000 s}{(s+10)(s+1000)}$, and input $V_{c}(t)=u(t) \sin (10 t)$

$$
\begin{aligned}
V_{0}(s) & =T(s) V_{1}(s) \\
& =(\underbrace{\frac{s}{s+10}}) \cdot(\underbrace{\left(\frac{1000}{s+1000}\right)} \cdot\left(\frac{10}{s^{2}+10^{2}}\right)
\end{aligned}
$$

low frey response nigh freq response
(high pass filter) (lo upas filter)

$$
=\frac{10000 s}{(s+10)(s+1000)\left(s^{2}+100\right)}=\frac{A}{s+10}+\frac{B}{s+1000}+\frac{C s+D}{s^{2}+1000}
$$

Setting $s=-10$, mull by $(s+10)$:

$$
\rightarrow \frac{10000(-10)}{(1000-10)(200)}=\frac{-50}{99}=A
$$

setting $s=-1000$: walt $(s+1000)$

$$
\begin{gathered}
\rightarrow \frac{10000(-1000)}{(10-1000)(1000000+100)}=\frac{10000}{990099}=B \\
\vdots \\
=\underbrace{\frac{10000}{990099}\left(\frac{1}{5+1000}\right)-\frac{50}{99}\left(\frac{1}{s+10}\right)}_{\text {decaying exponential }}+\underbrace{\frac{4950}{10001}\left(\frac{s}{s^{2}+100}\right)+\frac{5050}{10001}\left(\frac{1}{s^{2}+100}\right)}_{\text {sinusoidal }}
\end{gathered}
$$

Bode Plots

September 24, 2017 3:34 PM
ex. $\quad T(s)=\frac{s}{s+10} \begin{aligned} & \text { (zero at zeno) } \\ & \text { (pole at }-50 \text {) }\end{aligned}$

ex. $T(s)=\frac{1000}{(s+10)(s+100)}$

ex. $T(s)=\frac{s}{(s+10+j 100)(s+10-j 100)}$

ex. $T(s)=\frac{s}{(s+s+j 00)(s+5-j 00)}$

ex. $T(s)=(1000)\left[\frac{1000 s}{(s+10)(s+1000)}\right]$

For any truster function $T(s)$, it we wat to bode plot for positive jo axis (evaluate $s=0+j \omega$), we can write:

$$
T(s)=T(j \omega)=\underbrace{M(\omega)} e^{j \phi(w)}
$$

$$
\begin{aligned}
& \ln |T(j w)|=\ln |M(\omega)|+j \phi((0) \\
& \downarrow \downarrow \\
& 20 \log _{10}|T(j w)|=20 \log |M(\omega)|
\end{aligned}
$$

Since transfer function fakes the form of polynomials / pdyuomidls, he can simplify as:

$$
\begin{aligned}
& T(s)=K \frac{\left(s+w_{z}\right)\left(s+w_{z}\right) \ldots}{\left(s+w_{p 1}\right)\left(s+w_{p 2}\right) \cdots} \\
& =K \frac{\left(j w+w_{z_{1}}\right)\left(j w+w_{z_{2}}\right) \cdots \cdot}{\left(j w+w_{p 1}\right)\left(j w+w_{p_{2}}\right) \cdots}
\end{aligned}
$$

$$
\begin{aligned}
& =K \frac{M_{z_{1}}(w) M_{z_{2}}(\omega) \ldots}{M_{p_{1}}(w) M_{p 2}(\omega) \cdots \cdot} e^{j\left(\arctan \frac{\omega_{2}}{w_{21}}+\cdots \cdot-\arctan \left(\frac{\omega}{\omega_{p 1}}\right) \ldots .\right)}
\end{aligned}
$$

where $M_{z_{1}}(w)=\sqrt{w^{2}+w_{z 1}^{2}} \ldots$.
Amplitude Bode Plot:

$$
20 \log _{10}|T(s)|=20 \log _{10}(k)+20 \log _{10}\left|M_{z}(w)\right|+\ldots-20 \log _{10}\left|M_{p 1}(w)\right| \ldots
$$

PHASE BODE PLOT:

Low Pass, Band Pass, \& High Pass
September 25, 2017 10:45 AM

$$
\frac{V_{0}}{V_{i}}=\frac{\left(\frac{1}{s c}\right)}{\left(\frac{1}{s c}+R\right)} \cdot \frac{\left(\frac{s}{R}\right)}{\left(\frac{s}{R}\right)}
$$

$$
=\frac{\left(\frac{1}{R C}\right)}{\left(\frac{1}{R C}+s\right)}
$$

$\rightarrow \omega_{p}=\frac{1}{R C} \int=\frac{\omega_{p}}{s+w_{p}}$
\rightarrow circuit has a pole at $s=-\omega_{p}$
ex. if $R=\mid K, C=1 p F$, then $W_{p}=\frac{1}{\mid \times x 0^{3} \cdot \operatorname{cox}^{1-12}}$

Given the following circuit:

Band pass filter when $C_{1}>C_{2}$ N_{0}-pass filter when $C_{2} \gg C_{1}$

Transfer Function: $\frac{V_{0}}{V_{i}}=\frac{Z_{2}}{z_{1}+Z_{2}}, \quad Z_{1}=R_{1}+\frac{1}{s C_{1}}, z_{2}=R_{2} / / \frac{1}{s c_{2}}$

$$
\rightarrow \frac{V_{0}}{V_{i}}=\frac{\left(\frac{1}{R_{1} c_{2}}\right) s}{s^{2}+\left(\frac{1}{R_{2} C_{2}}+\frac{1}{R_{1} C_{2}}+\frac{1}{R_{1} C_{1}}\right) s+\frac{1}{R_{1} R_{2} C_{1} C_{2}}}
$$

This circuit has one zeno (at zero) and two poles.
Using the $\underbrace{\text { quadratic formula to }}$ sole the denominator into: $\left(s+\omega_{p 1}\right)\left(s+w_{p 2}\right)$

$$
\begin{aligned}
& \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \rightarrow S_{12}=\frac{\left.-\left(\frac{1}{R_{2} C_{2}}+\frac{1}{R_{1} C_{2}}+\frac{1}{R_{1} C_{1}}\right) \pm \sqrt{\left(\frac{1}{R_{2} C_{2}}+\frac{1}{R_{1} C_{2}}+\frac{1}{R_{1} C_{1}}\right)^{2}-4(1)\left(\frac{1}{R_{1} R_{2} C_{C} C_{2}}\right.}\right)}{2\left(C_{1}\right)}
\end{aligned}
$$

We can make a few approximations:
(1) Since $C_{1} \gg C_{2}$ for band pass, then $\frac{1}{R_{1} C_{2}}+\frac{1}{R_{1} C_{1}} \approx \frac{1}{R_{1} C_{2}}$

$$
\approx \frac{-\left(\frac{1}{R_{2} C_{2}}+\frac{1}{R_{1} C_{2}}\right) \pm \sqrt{\left(\frac{1}{R_{2} C_{2}}+\frac{1}{R_{1} C_{2}}\right)^{2}-\frac{4}{R_{1} R_{2} C_{2} C_{2}}}}{2\left(\frac{1}{R_{2} C_{2}}+\frac{1}{R_{1} C_{2}}\right)^{2}-\frac{4}{R_{1} R_{2} C_{1} C_{2}}}
$$

$$
\begin{aligned}
- & \left(\frac{1}{R_{2} C_{2}}+\frac{1}{R_{1} C_{2}}\right)^{2}-\frac{4}{D_{1} R_{2} C_{1} C_{2}} \\
& =\left(\frac{1}{R_{2} C_{2}}\right)^{2}+\frac{2}{R_{1} R_{2} C_{2}^{2}}+\left(\frac{1}{R_{1} C_{2}}\right)^{2}-\frac{4}{R_{1} R_{C} C_{1} C_{2}}
\end{aligned}
$$

(2) Since $C_{1}>C_{2}$, then $\frac{2}{R_{1} R_{2} C_{2}^{2}} \gg \frac{4}{R_{1} R_{2} C_{1} C_{2}}$

$$
\begin{aligned}
& \approx \frac{-\left(\frac{1}{R_{2} C_{2}}+\frac{1}{R_{1} C_{2}}\right) \pm \sqrt{\left(\frac{1}{R_{2} C_{2}}\right)^{2}+\frac{2}{R_{1} R_{2} C_{2}^{2}}+\left(\frac{1}{R_{1} C_{2}}\right)^{2}}}{2} \\
& \approx-\frac{1}{2}\left(\frac{1}{\left.R_{2} C_{2}+\frac{1}{R_{1}\left(C_{2}\right.}\right)} \pm \frac{1}{2}\left(\frac{1}{R_{2} C_{2}}+\frac{1}{R_{1} C_{2}}\right)\right. \\
& S_{1} \approx 0, \quad S_{2}=-\left(\frac{1}{R_{2} C_{2}}+\frac{1}{R_{1} C_{2}}\right) \\
& \longrightarrow \text { low freq pole B not exactly } 0, \text { so well } \\
& \longrightarrow \begin{aligned}
W_{p 2} & =\frac{1}{R_{2} C_{2}}+\frac{1}{R_{1} C_{2}} \\
& =\frac{1}{C_{2}}\left(\frac{1}{R_{2}}+\frac{1}{R_{1}}\right) \\
& =\frac{1}{C_{2}} \cdot \frac{1}{R_{1} \| R_{2}} \\
U_{P_{2}} & =\frac{1}{C_{2}\left(R_{1} \| R_{2}\right)}
\end{aligned}
\end{aligned}
$$

\rightarrow low fred pole B not exactly 0, 30 we'll hare to come back to this. ($w_{p r}$)
knowing $\omega_{p 2}$, we can find $\omega_{p r}$:
denominator: $\quad\left(s+w_{p 1}\right)\left(s+w_{p 2}\right)=s^{2}+\left(\omega_{p 1}+w_{p 2}\right) s+w_{p 1} w_{p 2}=0$. equating we denominator of the transfer function

$$
\begin{aligned}
& s^{2}+\left(w_{p_{1}}+w_{p 2}\right) s+w_{p} \omega_{p 2}=s^{2}+\left(\frac{1}{R_{1} C_{1}}+\frac{1}{R_{1} K_{2}}+\frac{1}{R_{2} C_{2}}\right) s+\frac{1}{R R_{2} C_{1} C_{2}} \\
& \omega_{p 1} \omega_{p 2}=\frac{1}{R_{1} R_{2} C_{1} C_{2}} \\
& \omega_{P_{1}}=\frac{1}{\omega_{p} R_{1} R_{2} C_{1} C_{2}} \\
& \approx C_{2}\left(R_{1} / / R_{2}\right)\left(\frac{1}{R_{1} R_{2}<C_{2}}\right) \\
& \approx \frac{R_{1} / R_{2}}{R_{1} R_{2} C_{1}} \\
& W_{p r} \approx \frac{1}{C_{1}\left(R_{1}+R_{2}\right)}
\end{aligned}
$$

In conclusion: $W_{p_{1}} \approx \frac{1}{C_{1}\left(R_{1}+R_{2}\right)}$

$$
\omega_{p_{2}} \approx \frac{1}{c_{1}\left(R_{1} \| R_{2}\right)}
$$

Notice the ω_{p}, is the $\frac{1}{\tau_{0 c}^{\text {ic }}}$, where $\tau_{0 C}^{a}$ is found by replacing C_{2} with O.C.

Similarily, $\omega_{\nmid 2} B \frac{1}{\tau_{s c} c^{2}}$, wheve $\tau_{s c}^{c_{2}}$ is found by replacing c_{1} with S.C

Recall Transfer Function from last part (with approx.)

$$
\frac{V_{0}}{V_{i}}=\frac{\left(\frac{s}{R_{1} C_{2}}\right)}{\left(s+\frac{1}{\left(R_{1}+R_{2}\right) C_{1}}\right)\left(s+\frac{1}{\left(R_{1} / / R_{2}\right) C_{2}}\right)}
$$

We can split into thrace parts: Low Freq Response
Mid band, High FregResponse

Magnitude Response (ot a generic bandpuss filter)

Finding Cutoff Frequency
If locations of poles \& zens are known:

$$
\begin{aligned}
& \omega_{L 301 B}=\sqrt{\omega_{p / L}^{2}+\omega_{p L L}^{2} \cdots-2 \omega_{z / 2}^{2}-2 \omega_{z 2 L}^{2} \cdots \cdot} \\
& \omega_{H 3 d B}=\sqrt{\left(\frac{1}{\omega_{p+1}}\right)^{2}+\left(\frac{1}{\omega_{p 2 H}}\right)^{2} \cdots-2\left(\frac{1}{\omega_{21 H}}\right)^{2}-2\left(\frac{1}{\omega_{z Z H}}\right)^{2} \cdots} \\
& =\sqrt{\tau_{p \mid H}^{2}+\tau_{p 2 H}^{2} \cdots-2 \tau_{Z \mid H}^{2}-2 \tau_{z 2 H}^{2}-\cdots}
\end{aligned}
$$

It locations of poles \& zeros are not known then use method of SC and $O C$ time constants.

Method of SC \& OC Time Constants

$$
\begin{aligned}
F_{L}(s) & =\frac{\left(s+w_{z 1 L}\right)\left(s+w_{z 2 l}\right) \cdots}{\left(s+w_{p 1}\right)\left(s+w_{p 2 L}\right) \cdots} \\
& =\frac{s^{n}+a_{1} s^{n L-1}+\cdots a_{n L}}{s^{N L}+b_{1} s^{N L-1}+\cdots b_{N L}}
\end{aligned}
$$

* If one of the pole free is $>$ amy other pole/zevo frey.
Then we can make the following approximation:

$$
\begin{aligned}
& \approx \frac{S^{n_{L}}}{S^{N L}+b_{1} S^{N_{C-1}}} \\
F_{[(s)} & \approx \frac{s}{S+b_{1}} \\
\text { where } b_{1} & =\omega_{p i L}+\omega_{p L L}+\ldots . \\
& =\frac{1}{\tau_{s C r}}+\frac{1}{\tau_{s C_{2}}}+\ldots \\
\begin{aligned}
W_{L S d B} & \approx b_{1}
\end{aligned} & =\sum_{i=1}^{N} \frac{1}{C_{i} R_{i s}}
\end{aligned}
$$

$$
\begin{aligned}
F_{H}(s) & \left.=\frac{\left(1+\frac{s}{w_{21 H}}\right)\left(1+\frac{s}{w_{z 2 H}}\right) \ldots}{\left(1+\frac{s}{w_{p 1 H}}\right)\left(1+\frac{s}{w_{p} 2 H}\right.}\right) \cdots \\
& =\frac{1+c_{1 s}+\cdots c_{m_{H}} s^{m_{1 t}}}{1+d_{1} s+\cdots d_{M_{H-}} s^{M_{H}}}
\end{aligned}
$$

* if one of the pole fig is $<$ any other pole/zeeo frey, Then be can approximute:

$$
F_{H}(s) \approx \frac{1}{1+d_{1} s}
$$

When $d_{1}=\frac{1}{\omega_{\text {PH }}}+\frac{1}{\omega_{P_{22} H}}+\ldots$

$$
=\tau_{o c 1}+\tau_{o c 2}+\cdots
$$

$$
\omega_{++3 d B} \approx \frac{1}{d_{1}}=\frac{1}{\sum_{i=1}^{M} C_{i} R_{i o}}
$$

